
RL-TR-96-210 
Final Technical Report 
January 1997 

DISTRIBUTED, INTERACTIVE 
DEVELOPMENT AND MONITORING OF 
TRANSPORTATION PLANS IN DYNAMIC 
ENVIRONMENTS 

University of Pittsburgh 

Jointly Sponsored by 
Rome Laboratory and 
Advanced Research Projects Agency 
ARPA Order No. A008 19970321 056 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNL/M/TED. 

rWlC QUALITY INSPECTED Z 

The views and conclusions contained in this document are those of the authors and should 
not be interpreted as necessarily representing the official policies, either expressed or 
implied, of the Advanced Research Projects Agency or the U.S. Government. 

Rome Laboratory 
Air Force Materiel Command 

Rome, New York 



This report has been reviewed by the Rome Laboratory Public Affairs Office 
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS 
it will be releasable to the general public, including foreign nations. 

RL-TR-96-210 has been reviewed and is approved for publication. 

APPROVED: 
NORTHRUP FOWLER III 
Project Engineer 

FOR THE COMMANDER: 
JOHN A. GRANIERO 
Chief Scientist 
Command, Control, & Communications Directorate 

If your address has changed or if you wish to be removed from the Rome Laboratory 
mailing list, or if the addressee is no longer employed by your organization, please 
notify RL/C3C, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in 
maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



DISTRIBUTED, INTERACTIVE DEVELOPMENT AND 
MONITORING OF TRANSPORTATION PLANS IN 

DYNAMIC ENVIRONMENTS 

Contractor:   University of Pittsburgh 
Contract Number:   F30602-93-C-0038 
Effective Date of Contract: 18 February 1993 
Contract Expiration Date 
Program Code Number: 
Short Title of Work: 

Period of Work Covered: 

30 June 1996 
3D30 
Distributed, Interactive Development and 
Monitoring of Transportation Plans in 
Dynamic Environments 
Feb 93 - Jun 96 

Principal Investigator: Martha E. Pollack 
Phone:        (412) 624-9590 

RL Project Engineer: 
Phone: 

Northrup Fowler III 
(315)330-3011 

Approved for Public Release; Distribution Unlimited 

This research was jointly sponsored by the Advanced Research 
Projects Agency of the Department of Defense and by Rome 
Laboratory, and was monitored by Northrup Fowler III, RL/C3C, 
525 Brooks Road, Rome, NY 13441-4505. 



Form Approved 
OMB No. 0704-0188 REPORT DOCUMENTATION PAGE 

PLt3lcr«port^bijdBnfortHBcrf«ednnofW(»m8äcxilsBsamatBdtoaweragBl hour per response, ridudhg the *ne for reviewing hrstrucrjons, searching Bdsrjng data sources, 
gather»^ and iratrt^ the data needed, arxiu* i |i^^a^ 
cotectoicfHcrmatlcr\hdurJr^r*Juae»Jluristo^ 
Davis Highway, Sute 1204, Arfrigton, VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (07010188), Washington, DC 20503.  

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 
January  1997 

a REPORT TYPE AND DATES COVERED 
Final     Feb  93  - Jun 96 

4. TITLE AND SUBTITLE 

DISTRIBUTED, INTERACTIVE DEVELOPMENT AND MONITORING OF 
TRANSPORTATION PLANS IN DYNAMIC ENVIRONMENTS 

5. FUNDING NUMBERS 

6. AUTHOR(S) 

Martha E. Pollack 

c - F30602-93-C-0038 
PE - 61101E & 62702F 
PR - A008 
TA - 00 
WU - 01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Department of Computer Science 
University of Pittsburgh 
Pittsburgh, PA 15260 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 

Advanced Research Projects Agency 
3701 Fairfax Drive 
Arlington VA 22203-1714 

Rome Laboratory/C3C 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

RL-TR-96-210 

11. SUPPLEMENTARY NOTES 

Rome Laboratory Project Engineer:  Northrup Fowler III/C3C/(315) 330-3011 

12a DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for Public Release; Distribution Unlimited 

12b. DISTRIBUTION CODE 

1 3. ABSTRACT(Maodmum 200 words) 

This project was aimed at adapting relevant techniques developed in real-time and dis- 
tributed operating systems, and combining them with techniques from real-time and dis- 
tributed AI, to support plan generation in dynamic, multi-agent environments, including 
crisis-action settings.  We describe DIPART - The Distributed, Interactive Planner's 
Assistant for Real-time Transporation planning - a prototype simulation system.  We also 
describe advances made in the project in three areas (i) planning technology, (ii) meta- 
level reasoning to control planning, and (iii) coordination of distributed planning. 

14. SUBJECT TERMS 

Planning, Meta-Reasoning, Distributed Planning 

15. NUMBER OF PAGES 
52 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED  

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED  

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std 239-18 
298-102 



Contents 

1 Executive Summary 1 

2 The DIPART System 2 
2.1 System Overview  2 
2.2 The Paciflca Scenario •  4 

3 Advances in Planning Technology 5 
3.1 Control during Planning  5 
3.2 Cost-Directed Planning  6 
3.3 Constraint-Based Planning  7 

4 Advances in Control of Reasoning 9 
4.1 Process Scheduling Algorithms for Meta-Level Control  9 
4.2 Contingency Selection in Plan Generation      10 

5 Advances in Distributed Planning and Communication 13 
5.1 Software Support for Communication ,  13 
5.2 Load Balancing for Distributed Planning  . .  . 13 
5.3 Plan Merging  15 
5.4 Multi-Agent Filtering  15 

6 Conclusions 17 

7 Project-Related Publications 23 



1     Executive Summary 

This document summarizes the research conducted between Feb. 18, 1993 and June 
30, 1995 on the project "Distributed, Interactive Development and Monitoring of Trans- 
portation Plans in Dynamic Environments", supported by the Rome Laboratory (RL) of 
the Air Force Material Command and the Defense Advanced Research Projects Agency 
(Contract F30602-93-C-0038). The project was aimed at adapting relevant techniques 
developed in real-time and distributed operating systems, and combining them with 
techniques from real-time and distributed AI, to support plan generation in dynamic, 
multi-agent environments. In support of this goal, we built DIPART—the Distributed, 
Interactive Planner's Assistant for Real-time Transportation planning—a prototype sim- 
ulation system that includes a network of agents, each of which assists a human planner, 
and a simulated dynamic environment, which implements Reece and Tate's Pacifica NEO 
scenario [38]. The key accomplishments of this project fall into four main categories: 

• The design and development of the DIPART testbed system (see Section 2.) 

• Advances in planning technology (see Section 3), including the development of 

— the LCFR strategy for efficient search control during plan generation; 

— an eifective algorithm for generating plans in domains in which actions have 
costs associated with them, and 

— a new planning framework based on the use of constraint-satisfaction process- 

ing methods. 

• Advances in meta-level reasoning to control the planning process in dynamic en- 
vironments (see Section 4), including 

— the identification of relevant process-scheduling algorithms and their adapta- 
tion to the control of planning in dynamic environments, and 

— the development of a framework for reasoning about which contingencies to 
plan for first, when time is limited. 

• Advances in coordinating a distributed planning process in a multi-agent setting 
(see Section 5), including the development of 

— software support for flexible communication strategies among planning agents; 

— a load balancing mechanism for distributing the planning effort effectively; 

— algorithms for merging individually formed plans, and 

— a method for efficiently coordinating the planned actions of agents with min- 
imal communication. 



2     The DIPART System 

Many current and potential AI applications are intended to operate in dynamic envi- 
ronments, including those with multiple agents. An important example is crisis action 
planning, which is typically a distributed process, involving multiple planners each tasked 
with forming plans to meet some subset of the overall mission objectives. During plan- 
ning, changes that occur in the world can affect the quality of the plans being created. 
When planning and execution are interleaved, as they often must be in crisis situations, 
changes can also affect the quality of plans whose execution has already begun. To op- 
erate in such environments, standard AI plan-generation technology must be augmented 
with mechanisms for managing changing information, for focusing attention when mul- 
tiple events occur, and for coordinating with other planning processes. In the DIPART 
project, we have been concerned with the development and analysis of such techniques. 
Many of the techniques we have explored derive from theoretical work in real-time AI 
and in related fields, such as real-time operating systems. 

To support our research on plan generation in dynamic, multi-agent environments, 
we built DIPART—the Distributed, Interactive Planner's Assistant for Real-time Trans- 
portation planning. DIPART is a prototype simulation system that includes a network 
of agents, each of which assists a human planner, and a simulated dynamic environment, 
which implements the Pacifica NEO scenario [38]. 

2.1     System Overview 

The DIPART system consists of a network of communicating nodes each assisting a 
human planner, plus a simulated environment [46]. The underlying idea is that each 
planner has responsibility for forming and overseeing the execution of some set of plans 
that are carried out in the (simulated) environment. Each planner may have only a 
restricted view of the environment and of the activities of the other planners; although 
cooperation among the planners may be desirable, it is not automatic. Figure 1 illus- 
trates the overall system architecture, highlighting the internal architecture of a single 
node. Because each node performs the role of an intelligent assistant, we sometimes 
refer to the nodes as "agent processes". 

The internal architecture of each DIPART node is based on a generic model of process 
scheduling, similar to those found in the literature on operating systems [45]. Incoming 
messages are stored on a Message Queue (MQ), and indicate events that may require 
attention. Often the value of responding to a particular message is time dependent. 
Thus, a mechanism is needed to determine what processes should be invoked in response 
to each message, and to schedule the selected processes. In our model, the module that 
makes these decisions is the Locus of Meta-Level Control (LMC); it is responsible for 
invoking various (object-level) processes, which we call Reasoning Modules (RMs). The 
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Figure 1: DIPART Architecture 

RMs include a resource estimator, which estimates the amount of computational and 
external resources required for a given task, a planner, which computes plans to achieve 
specified goals, and an execution monitor, which tracks the performance of plans. 

As shown in the figure, the LMC performs its task by posting entries in a Schedule 
of Computation (SOC). These entries include information about which RM to invoke, 
the input to that process, the invocation deadline (i.e., the time after which the system 
should no longer bother to invoke the process), and, in some circumstances, the amount 
of time to allocate to the process in question. A process controller, called the Reasoning 
Modules Manager (RMM) reads entries from the SOC and then invokes the appropriate 
process. Individual processes may also generate messages if follow-on computation is 
needed. A global database stores information that can be used by both the LMC and 
the object-level processes. 

In addition to the agent nodes, DIPART includes a simulator which has been tailored 
to Pacifica NEO scenario, described below. It runs as a separate process in the overall 
DIPART system. It represents the "actual" state of the world; in contrast, the models 
of the world kept by individuals agents may be limited or may become out-of-date, 
as they are intended to represent the views that the agents currently have, given the 
information they have so far received. The simulator is designed to allow modeling of 
resource allocation to agents. 

The DIPART system has been implemented on DECStation 5000 workstations, under 
Ultrix 4.3, using Allegro Common Lisp and the Garnet interface-development system. 
Each of the agent nodes runs on its own processor, as does the simulated environment. 
Within each node, the LMC runs in one thread, and the RMs in another. A com- 
munication package based on UDP has also been implemented to support inter-node 



communication. 

2.2    The Pacifica Scenario 

To ground our research, we employ the Pacifica NEO scenario, developed by Reece and, 
Täte for the RL/ARPA Planning Initiative as part of the PRECiS environment [38]. 
This scenario involves the fictional island nation of Pacifica, on which a number of U.S. 
citizens are located. The island has various natural and man-made features, including 
cities, an airport, bridges, roads, and a volcano. Because of an expected uprising, the 
citizens need to be evacuated. For this, they must first be brought by truck to the capital 
city, where the airport is located. Evacuation can be complicated by unexpected road 
or bridge closings, either as a result of natural forces, e.g., a volcano, or hostile human 
forces; it can also be complicated by the fact that the citizens may be scattered around 
the island, and must themselves get to major cities before being taken by truck to the 
capital. 

We assume that the NEO is to be planned and overseen by several human planners 
(typically, we run DIPART with between 2 and 6 planning nodes). Each human planner 
is responsible for a different component of the operation; although the task may be 
divided in various ways, we generally assign each planner the task of moving citizens 
from one city to the capital. The exact number of citizens and their current location 
may not be fully known to each planner. Each human planner is assisted by a DIPART 
node; the human submits goals to the node, and can query the node for current status 
information. The nodes are then responsible for forming plans to satisfy the user's goals, 
for coordinating communication with other planners, and for alerting the user to reports 
from agents in the (simulated) world. 



3     Advances in Planning Technology 

The key task performed by DIPART nodes is plan generation: human users input goals, 
such as evacuating a certain number of citizens from some city, and the DIPART node 
generates, dispatches, and monitors the execution of a plan to carry out that goal. 
Consequently, a central focus of our research has concerned the development of efficient 

planning algorithms. 

3.1     Control during Planning 

Many current state-of-the-art planners make use of partial-order causal link (POCL) 
algorithms [27, 30]. POCL planning involves searching through a space of partial plans, 
where the successors of a node representing partial plan P are defined to be the refin- 
ments of P. As with any search process, POCL planning requires effective control; in 
POCL planning, search control has two components. The first, node selection, involves 
choosing which partial plan to refine next. Most POCL algorithms use best-first search 
to perform node selection. Once a partial plan has been selected, the planner must then 
perform flaw selection, which involves choosing either a threat to resolve (typically, by 
promotion, demotion, or separation) or an open condition to establish (by adding a new 
step to the plan or adding a new causal link to an existing step). Unless it is impossible 
to repair the selected flaw, new nodes representing the possible repairs are added to the 

search space. 
In [19], we explored a flaw-selection strategy, the Least-Cost Flaw Repair (LCFR) 

strategy, which can be seen as a generalization of the DUnf strategy that had been 
proposed by Peot and Smith [32]. In LCFR, we define the repair cost of any flaw— 
either threat or open condition—to be the number of nodes generated as possible repairs. 
LCFR is the strategy of always selecting a flaw with the lowest possible repair cost at 
a given node. LCFR will delay any threat that is unforced (repair cost > 1) in favor 
of a threat that is forced (repair cost <= 1.) By treating all flaws uniformly, LCFR 
also applies a similar strategy to open conditions, preferring to handle open conditions 
that are forced over open conditions, or threats, that are not. Similarly, LCFR handles 
the case in which all that remain are unforced threats: the LCFR strategy will select a 
threat with minimal repair cost. 

Our experimental assessment of LCFR demonstrated that the power of DUnf does not 
come from delaying threat repairs per se. but rather from that fact that this delay has the 
effect of imposing a partial preference for least-cost flaw selection. Our experiments also 
showed that extending this to a complete preference for least-cost selection, as in LCFR, 
reduces search-space size even further. Details of the experiments can be found in [19]. 
Here we simply present the results of a key experiment, in which we compared 5 search 
strategies on 49 test problems from a variety of domains. Figure 2 plots the percentage 



100 

90 

80 - 

70 

60 

50 

« 40 

30 - 

20 - 

10 

0 

I                    I                    I                    r ■ -r- 

- ff - 

-I -rT 

 ;:rÄ::::*:i::i.. 

' 
LCFR -e— 

DUnf-LCOS ~t— 
- 

LCOS -D-- 
DUnf   x  

- 
UCPOP -«-- _ 

. '                    i 

1000 2000     3000 
Nodes examined 

4000 5000 

Figure 2: Comparison of planner search spaces 

of test problems solved by each planner with a fixed number of nodes examined. (Each 
point {x,y) denotes that y% of the 49 test problems were solved by examining no more 
than x nodes.) As can be seen, the LCFR-based planner outperforms any of the others, 
including the two based on Peot and Smith's DUnf strategy. 

As might be expected, the benefit of the LCFR strategy is not without a cost: specifi- 
cally, performing least-cost flaw selection can incur a significant computational overhead. 
We therefore developed QLCFR, which reduces this overhead by approximating repair 
costs, and we demonstrated its effectiveness experimentally. Again, complete details can 
be found in [19]; subsequent work that builds on the LCFR approach includes [44, 43]. 

3.2     Cost-Directed Planning 

The LCFR strategy described above is quite effective for planning problems in which 
alternative solutions to a planning problem are considered to be roughly equal—an 
assumption that is, in fact, made in much of the plan generation literature. In many 
domains, however, this assumption is not warranted: for any given planning problem, 
some solutions have lower execution cost, some are more likely to succeed, and so on. To 
handle such cases, we developed a "cost-directed" heuristic planner, which is capable of 
finding low-cost plans. The algorithm performs POCL planning, using an A* strategy 
for node selection. The heuristic evaluation function is computed by a deep lookahead 
that calculates the cost of complete plans for a set of pre-defined top-level subgoals, 
under the (generally false) assumption that those subgoals do not interact. In our work 
so far, we have assumed that flaw selection is performed randomly, leaving it to future 
work to explore the question of which flaw selection strategies can best be integrated 



into our approach. 
In [9], we show that the cost-directed planning algorithm not only leads to finding 

lower-cost plans, but in many circumstances it does this without negatively impacting 
the efficiency of planning: in fact, it can lead to a significant decrease in total planning 
time. This result is due in part to the fact that generating plans for a set of independent 
subgoals is exponentially less costly than generating a complete plan taking interactions 
into account[23]. At least in the limit, the cost of forming plans for subgoals treated 
independently does not significantly effect the computational complexity of the complete 
planning problem. Moreover, while focusing on lower-cost plans, the heuristic function 
effectively prunes the search space. Thus, the use of the deep evaluation in node selection 
can outweigh the marginal additional complexity. Our experiments demonstrate that 
the advantages of cost-directed planning increase with the complexity of the planning 
problem, where this is measured in terms of the amount of subgoal interdependence, the 
heterogeneity of the cost of actions, the average branching factor, and the number of 
subgoals and length of the minimal-cost plan. 

3.3     Constraint-Based Planning 

Both of the strategies for controlling planning described above build directly on a tradi- 
tional POCL style of planning. To a large extent, POOL planning was originally moti- 
vated by an observation of the advantages of taking a "least-commitment" approach to 
planning. Least-commitment planning involves postponing decisions until constraints 
force them to be made. Any decision made when it is not forced is an "early com- 
mitment." POCL planning, as opposed to the earlier, state-spaced planning, made it 
possible to take a least-commitment approach to some decisions, particularly to the 
ordering of plan steps. However, POCL planners continue to rely to some degree on 
early commitments for other decisions, including variable binding, threat resolution, 
and choice of an operator to satisfy open conditions. 

Because the least-commitment approach has, by and large, been successful where it 
has been tried, an obvious question is whether the least-commitment approach should be 
applied to every planning decision; in other words, is early commitment ever a good idea? 
An obstacle to addressing this question experimentally arises from the way in which 
POCL planners manage decision-making. They take what we call a passive postpone- 
ment approach, choosing one decision at a time to focus on, and keeping all the other, 
postponed decisions (about how to achieve certain goals and how to resolve threats) 
on an "agenda," where they play no role in the plan generation process until they are 
selected for consideration. The items on the agenda may in fact impose constraints 
on the plan being generated, but these constraints are not available to the planning 
algorithm so long as the items remain on the agenda. The fact that constraints exist 
but are not always accessible makes it difficult if not impossible for a POCL planner to 



be made more "least commitment". Postponing decisions until they are forced implies 
being able to recognize whether any decision is forced, and this in turn implies that all 
the constraints that might affect a decision must be available to (and must be used by) 
the planning algorithm. 

In response to these difficulties, we developed a new approach to planning, called 
active postponement, in which even postponed decisions play a role by constraining the 
plan being generated. This technique has been implemented in the Descartes system. 
The key idea in Descartes is to transform planning problems into Constraint Satisfac- 
tion Problems (CSPs) which can then be solved by applying both planning and CSP 
techniques. In general, a planning problem cannot be transformed into a single static 
CSP, however; instead it must be transformed into a dynamic CSP to which new con- 
straints and variables can be added during the solution process. The dynamic CSP is 
then solved by breaking it down into static CSPs, to which standard CSP techniques 
may be applied. 

As with the approaches discussed above, we have conducted a number of experiments 
to explore the power of constraint-based planning. These experiments demonstrate that 
passive postponement—even "smart" passive postponement, using a selection strategy 
like LCFR—can result in significant performance penalties. Further experiments show 
that it is worthwhile to extend the least-commitment approach much further than has 
been done in prior work. These results also suggest, however, that there are some 
fundamental limits to the effectiveness of the least-commitment approach, and that 
sometimes early commitments can increase planning efficiency. We have proposed a 
principled approach to deciding when to make early commitments in planning, based 
on an analysis of the ongoing constraint processing: specifically, early commitment is 
needed when the planning process is forced to make what we call unrestricted expansions. 
Details of the constraint-based planning approach, its implementation in Descartes, and 
the results of experiments using Descartes can be found in [20, 21, 18]. 



4    Advances in Control of Reasoning 

As noted above, planning in DIPART occurs in a dynamic environment; often, one 
planning problem will have to be interrupted so that attention can be given to another 
planning problem. A central focus of the DIPART project has thus been the development 
and assessment of alternative strategies for meta-level reasoning, i.e. deciding how to 
allocate computational resources. Within the DIPART system this task is performed by 
the LMC. The LMC must decide what to do from messages that can arrive from four 
different sources: 

1. the human user, who posts a new goal to the system or tells the system a new fact. 

2. other nodes, which may be seeking information, or may have information to share, 
or may have goals that they would prefer to be handled by someone else. 

3. agents situated in the simulated world, who may transmit a message to their 
supervising agent (i.e. DIPART node) to report an unexpected change in the 
environment. 

4. reasoning modules within the node itself, which post messages identifying infor- 
mation about tasks that are in need of further processing by other RMs. 

4.1     Process Scheduling Algorithms for Meta-Level Control 

The problem of allocating reasoning resources is sometimes called the deliberation- 
scheduling problem. Previous approaches to deliberation scheduling in AI include the 
use of off-line allocation of on-line deliberation time for tasks with known computational 
demands [14, 2, 48], and the application of decision-theoretic estimations of optimal 
computational sequences [41]. Heuristic strategies have been proposed as well [34]. 

The deliberation-scheduling problem bears a strong similarity to the problems of pro- 
cess scheduling in real-time operating systems [45], job scheduling in operations research 
[33], and transmission scheduling in local area networks [28]. Not all process- or job- or 
transmission-scheduling algorithms are applicable to deliberation scheduling, however. 
In particular, we require scheduling algorithms that are: 

• on-line, i.e., construct schedules at run time; 

• dynamic, i.e., support the random arrival of tasks; 

• stochastic, i.e., support tasks with random computation times; and 

• soft real-time, i.e., support the scheduling of tasks that yield less than maximal 
value if completed after some critical period. 



Two simple and well-researched scheduling algorithms are Earliest Deadline First 
(EDF) and Least Slack First (LSF). These both incorporate deadline information and 
consequently achieve better results than algorithms that do not, such as First-in-first-out 
(FIFO) and Round-robin [17, 28]. It is known that, for a schedulable set of processes, 
i.e., one for which there exists an optimal schedule where all deadlines can be met, EDF 
and LSF produce a schedule that meets all deadlines, and hence performs optimally [1]. 
However, the performance of these two algorithms degrades sharply when the system is 
saturated, i.e., it has to deal with a non-schedulable set of tasks. 

To schedule saturated job sets effectively, scheduling algorithms must take into ac- 
count the cost of missing a deadline. This is particularly true when there are trade-offs in 
the acceptance rate and the deadline miss rate of tasks in the system. The environments 
of autonomous agents typically present such trade-offs: it may well be worth missing 
the deadlines for some tasks in order to achieve higher-quality performance on other 
tasks. Such trade-offs can be evaluated with the aid of value-density assessment tools. 
The value density of any task t is defined to be the value to the system of completing t 
divided by its remaining computation time. Value-density assessments are included in 
scheduling algorithms such as Best-Effort (BE) and Dynamic-priority (DP); previous re- 
search has shown that these algorithms perform better than EDF and LSF in saturated 
environments [17, 28]. 

We have explored the usefulness for deliberation scheduling of the value-density mea- 
sure and the algorithms that rely on it. Specifically, we identified appropriate candidate 
algorithms, conducted preliminary experiments to compare their performance of these 
algorithms, demonstrated a proof-of-concept use of these algorithms for deliberation 
scheduling in the DIPART system, and analyzed current limitations of the proof-of- 
concept system, i.e., identified certain assumptions that are made in the existing algo- 
rithms that must be relaxed to support full-fledged deliberation scheduling. In addition, 
we developed a modification of the Best Effort algorithm that results in improved per- 
formance for the DIPART job mix. Details can be found in [39, 40]. 

4.2     Contingency Selection in Plan Generation 

Classical AI plan generation systems assume static environments and omniscient agents, 
and thus ignore the possibility that events may occur in unexpected ways—that con- 
tingencies might arise—during plan execution. The plans these systems construct are 
simply sequences of actions: they assume that the state that will occur after action Ai is 
taken is the one in which Ai+i should be performed. The problem with classical planners 
is, of course, things do not always go "according to plan." 

In contrast, universal planning systems [42] and more recent Markov-decision process- 
based systems (e.g., [7, 3]) make no such assumptions. They produce "plans" or "poli- 
cies" that are functions from states to actions. After performing an action in one state, 

10 



the agent then looks to see what new state it is in, and performs the action prescribed 
for that state. Effectively, every contingency is handled at planning time. The problem 
with universal planning and MDP systems is that the state space is typically much too 

large for them to be effective. 
Conditional planners take the middle road. They do not assume that the result of 

each action taken is necessarily known at planning time; instead they allow for both 
conditional actions with multiple possible contingencies, and for sensing actions that al- 
low agents to determine which contingency occurred (e.g., [8, 31, 37]) A key question in 
conditional planning is: how many, and which contingencies should be selected so that 
the plan can be extended to include actions that will be taken in case the contingency 
fails? One cannot plan for all possible failures, or one will inherit the problems of uni- 
versal planners. One cannot ignore all possible failures, or one will inherit the problems 
of classical planners. 

The need to select contingencies was observed by Peot and Smith [31, p. 196], who, 
in describing the conditional planner CNLP, noted that "the size and complexity of 
the plans generated by CNLP increase exponentially with the number of observation 
actions in the plan. The amount of computation may be reduced by attaching a relative 
likelihood measure to the various contexts in the plan ... and skipfing] contexts that are 
sufficiently unlikely ...". We have developed a planning algorithm that generalizes this 
suggestion, by deciding which of the possible failures to plan for, based not just on their 
likelihood of occurrence, but also on the damage they would cause if in fact they were to 
occur. Put otherwise, our algorithm attempts to identify the influence each contingency 
would have on the outcome of plan execution, and then proceeds by giving priority to 
the contingencies whose failure would have the greatest negative impact. 

We define contingencies to be alternative outcomes of probabilistic actions, and our 
approach is to directly reason about the value of planning for the failure of various con- 
tingencies. In order to make this feasible, we have adopted a different strategy towards 
conditional planning than that taken in some earlier systems, notably C-BUREDAN [8], 
which is, to our knowledge, the only partial-order conditional planner that does not 
necessarily plan for all contingencies. C-BUREDAN constructs branches for alternative 
contingencies in a somewhat indirect fashion. It sometimes discovers that there are two 
incompatible actions, say, Al and A2, each of which can achieve some condition C. To 
resolve the threats between Al and A2, C-BURIDAN introduces an observation action O 
with two contingent outcomes, and then "splits" the plan into two branches, associating 
each outcome with one of the actions. In the process of doing this, C-BURIDAN does 
not reason about whether both those contingent outcomes are worth planning for. 

Our algorithm works by iterative refinement. It first finds a skeletal plan to achieve 
the goals, and then during each iteration selects a contingency whose failure will have a 
maximal disutility, i.e., one that will have a maximal negative impact if it does not occur. 
The algorithm then extends the plan to include actions to take in case the contingency 
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fails.   Iterations proceed until the expected utility of the plan exceeds some specified 
threshold. Details of this work can be found in [29]. 
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5     Advances in Distributed Planning and Commu- 
nication 

One addition research topic that centrally concerns us is the specification of appropriate 
communication and coordination strategies for multi-agent, dynamic planning. We first 
briefly describe the communication package we have implemented to support communi- 
cation among DIPART nodes, and then sketch approaches to multi-agent planning that 

we have been investigating. 

5.1 Software Support for Communication 

Communication among nodes in DIPART is built on a group management model [6]. 
Groups of processes (or, in our case, agents) cluster into a single logical entity such 
that all communications sent by a member of the group are received by all members of 
the group. Thus multi-process communication is achieved by a single operation rather 
than by a series of operations to a (potentially unknown or partially known) set of 
individual agents. Group operations can take advantage of network-multicast capability, 
thus reducing communication overhead and increasing concurrency. 

Using a group management model, we have implemented a set of communication 
primitives that enable the basic group operations (e.g., form a group, dissolve a group, 
join a group, leave a group, invite to a group, and exclude from a group) and commu- 
nication actions (e.g., send, send and block, receive, group-cast, group-cast and block, 
receive any, receive any and block). Groups may have different structures, which de- 
termine the relationship among group members. In a coordinated group, the owner of 
the group must approve any new members, while in peer groups, all new members are 
accepted. There are also different group types: in a private group, communication is 
restricted only to the members of the group, while non-members may send messages to 
public groups. We have also implemented a group server, which maintains information 
about the status and membership of each group, and is responsible for synchronizing 
group actions. Additional details can be found in [49, 24]. 

5.2 Load Balancing for Distributed Planning 

The communications package can be used to support a process of load balancing among 
the DIPART agents, so that no agent falls behind as a result of having too many re- 
sponsibilities, while other agents sit idle. We have investigated a range of load-balancing 
techniques developed in the distributed operating-systems literature, focusing in partic- 

ular on those that use dynamic thresholds. 
The purpose of dynamic thresholds is to give the agent more flexibility to adapt itself 
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to a changing environment. Consider a gift shop as an example: if the shop receives a 
hundred customers in a regular week day it is a busy day. However, if the shop receives 
a hundred customers just before Christmas, it is not a busy day. Similarly, in a mili- 
tary application, one would expect higher processing loads during crisis situations than 
during routine, peacetime operations. Instead of determining a priori what is a high 
load, dynamic load balancing evaluates the load of an agent at running time according 
to the partial information it possesses about the environment. As a consequence, given 
the same amount of tasks to perform the same agent may consider itself highly loaded 
or lightly loaded depending on its estimation of the system load. Dynamic thresholds 
are suitable in dynamic environments when a system must avoid unnecessary communi- 
cations that would add an extra overhead to an already overloaded system. 

Another way to lessen communication load is to employ selective unicasting. In 
load balancing, one faces a trade-off between the cost of exchanging messages and the 
necessity of having an information accurate enough to provide efficient load balancing. 
When initiating load balancing an agent could send a message to every other agent asking 
information about their loads and wait for the answers before selecting the best agent 
to balance with. However this classical scheme has two drawbacks: it requires many 
messages to be exchanged, and it is not fault-tolerant—it does not include provisions 
for the case in which one or more agents is unable to respond. In contrast, in selective 
unicasting the messages concerning the exchange of information about the load of the 
system are piggybacked to task balancing messages and therefore induce almost no 
overhead. Also, the scheme is non-blocking, and will not collapse should one or more 
agents fail. However, selective unicasting with piggybacking results in the agent being 
unable to access complete information about the system's current load. Thus, each agent 
must estimate this information by using data about the previous load history. 

The load-balancing algorithms we constructed were implemented and subjected to 
experimentation to assess their performance relative to a variety of alternatives, including 
a broadcasting scheme; we also studied the relative effectives of client-driven, server- 
driven, and hybrid variants. We measured two things: through-put and efficiency, both 
of which were defined in terms of the Pacifica scenario. For instance, throughput was 
taken to be the ratio p/d, where p is the number of passengers for whom transportation 
has been requested, and d is the delay between the time of the first goal submitted and 
the completion of the last request. The throughput is given by the ratio p/d. 

Details of the experiments, and complete results, can be found in [25, 26]. The most 
important result is that selective load balancing (hybrid) yields a good throughput, 
even compared with load balancing with broadcast. When compared with the lower 
bound, hybrid load balancing achieves a performance 34% higher, client driven load 
balancing achieves a performance 15% higher, and server driven load balancing achieves 
a performance 11% higher. Compared to the upper bound, selective load balancing 
performs only 7% worse, while using many fewer messages.   Thus it appears possible 
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to achieve effective load balancing by using dynamic thresholds, even if communication 
must be minimized. 

5.3 Plan Merging 

The load-balancing work involves agents sharing the work, but each individually forming 
their own, more or less complete plans. Sometimes this is feasible, but at other times, 
agents need to form partial plans, which are then merged together. We identified four 
different types of situations in which some merging may be needed. In the first, a group 
of agents has to cooperatively achieve one common global goal. In the second type of 
situation, due to time constraints, execution of the plan is interleaved with the planning 
process itself. In the third third, each agent has its own private, individual goal. There 
is also a fourth situation, in which planning and execution are interleaved for a group 
of agents with private goals. The DIPART scenario can be viewed either as an instance 
of the second of the fourth type, depending on how much knowledge each of the human 
planning agents has about the plan for the overall mission. 

For each of these situations, we described how a global plan is constructed through the 
process of incrementally merging sub-plans. By making use of the computational power 
of multiple agents working in parallel, the process is able to reduce the total elapsed 
time for planning as compared to a central planner. For the case in which agents do not 
have complete knowledge of the overall mission, we show how agents can reach consensus 
about what multi-agent plan to carry out using a voting procedure, without having to 
reveal full goals and preferences (unless that is actually necessary for consensus to be 
reached). Our technique also does away with the need to generate final alternatives 
ahead of time (instead, candidate states arise at each step as a natural consequence of 
the emerging plan). The agents iteratively converge to a plan that brings the group to 
a state maximizing the overall system utility. Details and experimental results can be 
in [11, 10, 13]. 

5.4 Multi-Agent Filtering 

In addition to plan merging, which involves explicit coordination among agents, it is 
sometimes useful for agents to have a means of achieving coordination implicitly. We 
have been investigating a strategy for implicit coordination called multi-agent filtering. 
It extends a single-agent strategy, filtering, which was developed as a way of controlling 
reasoning in dynamic environments. The notion of single-agent filtering derives from 
the work of Bratman [4]; it involves an agent committing to the goals it has already 
adopted, and tending to bypass (or "filter out") new options that would conflict with 
their successful completion [5, 34, 35]. We and others have studied the effectiveness of 
filtering in domains with various characteristics[36, 22, 35]. 
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Where single-agent filtering means tending to bypass options that are incompatible 
with an agent's own goals, multi-agent filtering means tending to bypass options that are 
incompatible with any agent's known or presumed goals. We examined several forms of 
multi-agent filtering, which range from purely implicit, in which agents have rules of legal 
action that lead to their avoiding conflict without ever reasoning explicitly about one 
another's goals, to minimally explicit, in which agents perform very shallow reasoning 
to assess whether their actions are incompatible with the likely intended actions of other 
agents. In no cases do the agents engage in any explicit negotiation. 

Our experimental results on the efficacy of multi-agent filtering are presented in 
[12]. The most interesting and surprising result is that, at least for the simple, abstract 
environments so far bstudied, multi-agent filtering is a dominant strategy: no matter 
what proportion of the agents in some environment choose not to filter, those that do 
filter perform better. 
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6     Conclusions 

The traditional planning paradigm in the AI literature has made a number of extremely- 
strong assumptions, including the following: 

1. There is a single planning agent, who is the only cause of change in the environ- 
ment. 

2. The planning agent knows all the relevant facts about its environment. 

3. The goals presented to the agent remain unchanged throughout the process of 
planning and execution. 

4. The goals are categorical, i.e., they are fully achieved or not (there is no notion of 
partial satisfaction). 

5. The actions to be performed have certain outcomes. 

Of course, these assumptions are violated in most real-world applications. In a crisis- 
action setting, for example, there will typically be many planning agents, each with 
incomplete information about the environment, who must coordinate with one another 
in the formation and execution of plans. The world will change not only as a result of 
these agents' actions, but also as a result of the actions of other agents, who may be 
hostile; changes may also occur independent of any agent's actions, for example, as a 
result of weather or other natural activity. As the situation develops, new goals may 
arise, and previous goals may become irrelevant. The actions to be performed will have 
uncertain outcomes, and it will be possible to achieve some goals only partially. 

The DIPART project has been concerned with expanding the planning process, to 
weaken the first three assumptions. (We have been less concerned with the fourth and 
fifth assumptions; but see the growing body of work on decision-theoretic planning, e.g. 
[15, 47, 16].) We have made progress towards our goal of supporting automated plan- 
ning in dynamic, multi-agent settings, by extending our understanding of the algorithms 
that can support planning. Thus, as described in this report, we have developed better, 
more efficient techniques for plan generation, for controlling the planning process, and 
for coordinating planning processes among multiple agents. In developing these tech- 
niques, we drew on earlier research both from real-time and distributed AI, and from 
real-time and distributed operating systems. Moreover, we employed an experimental 
methodology, in which we explored the performance of our proposed algorithms under 
different conditions by conducting systematic experiments using experimental platforms, 
including the DIPART simulator. 

Of course, many research questions remain unanswered. In our view, perhaps the 
most important involves further development of the foundations of dynamic planning: 
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planning in situations in which one's goals and knowledge change, sometimes dramat- 
ically, over time. In particular, little has yet been done on the question of exploiting 
one's expectations about future change during the planning process. For example, if a 
planning agent expects that it will soon gain a large amount of additional information, 
it may choose to defer planning and/or to form only highly abstract plans until that 
additional information is received. A related problem involves forming plans that are 
robust with respect to anticipated changes in the environment. A plan that would be 
optimal if the environment does not change might well be suboptimal in light of changes 
that can reasonably be expected to occur. Current planning technology does not include 
mechanims for reasoning about expected change. 

Another critical question still to explored is the cost of learning in dynamic environ- 
ments. Just as there is a trade-off between communicating, to receive more informa- 
tion, and acting on the basis of what is already known, in a dynamic environment, an 
agent must weigh the cost of learning a new procedure for achieving a goal against the 
continued use of an already known, but possibly less efficient procedure. Complete de- 
liberation about the utility of learning is not always feasible in a dynamic environment; 
more efficient, if suboptimal, strategies for determining when to attempt to learn must 
be designed. The development of such strategies awaits further investigation. 
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OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


